您好,欢迎来到login_星欧(官方)代理招商直营娱乐!

首页> 《中国测试》期刊 >本期导读>旋转式室温磁制冷机用永磁系统的设计与数值计算

旋转式室温磁制冷机用永磁系统的设计与数值计算

362    2024-06-26

¥0.50

全文售价

作者:王鹏宇, 高磊, 程娟, 刘翠兰, 张英德, 李兆杰

作者单位:包头稀土研究院 白云鄂博稀土资源研究与综合利用国家重点实验室,内蒙古 包头 014030


关键词:磁路设计;NdFeB永磁体;有限元计算;磁场强度


摘要:

选用NdFeB永磁体提供磁场以及高磁导率钢作为磁轭,设计旋转式室温磁制冷机用永磁系统,并利用有限元法计算磁场分布。设计的永磁系统可利用距离控制架调节NdFeB永磁体的位置,从而实现空间磁场范围内的连续可调。永磁系统中间部分由电机带动做定轴转动,以实现磁工质的励磁与退磁。利用COMSOL Multiphysics软件对磁工质所在位置的磁场进行数值计算。结果表明:距离L的减小导致磁感应强度的最大值B1增大,最小值B2减小,致使磁场强度范围变大,增强磁工质的磁热效应;当L为79 mm时,不同旋转角度α下,永磁系统所产生的磁场强度范围为32~1265 mT;并且,磁感应强度值的实测结果和计算结果吻合程度较好,差值在30 mT以内。


Design and numerical simulation of magnetic field system for rotary room-temperature magnetic refrigerator
WANG Pengyu, GAO Lei, CHENG Juan, LIU Cuilan, ZHANG Yingde, LI Zhaojie
State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
Abstract: A magnetic field system for rotary room-temperature magnetic refrigerator was designed. The NdFeB magnets were used to provide magnetic field and high permeability steel was used as magnetic yoke. The distribution of magnetic field was simulated by finite element analysis. In the designed magnet field system, the relative position of NdFeB magnets can be adjusted by using the distance control frame to realize the continuous adjustment of the magnetic field in the spatial range. A motor drives the middle part of magnetic field system to rotate to realize the excitation and demagnetization of the magnetic refrigerant. The COMSOL Multiphysics software was used to simulate the magnetic field at the position of magnetic refrigerant. The simulation results demonstrate that the decrease of distance (L) will increase the maximum magnetic induction intensity B1 and decrease the minimum magnetic induction intensity B2, which expands the range of magnetic field intensity and enhances the magnetocaloric effect of magnetic refrigerant. Under different degrees of rotation (α), the magnetic field intensity generated by the magnetic field system ranges from 32 mT to 1265 mT when L = 79 mm. The measurement result of magnetic induction intensity is in good agreement with the simulation. The difference between them is within 30 mT.
Keywords: magnetic circuit design; NdFeB magnet; finite element analysis; magnetic field intensity
2024, 50(6):106-110 收稿日期: 2022-05-19;收到修改稿日期: 2022-07-26
基金项目: 国家自然科学基金(52066001);内蒙古自然科学基金(2021MS05016);白云鄂博稀土资源研究与综合利用国家重点实验室项目(2021Z2337)
作者简介: 王鹏宇(1996-),男,内蒙古乌兰察布市人,工程师,研究方向为磁制冷材料与磁制冷机的开发与研制。
参考文献
[1] TUŠEK J, ZUPAN S, ŠARLAH A, et al. Development of a rotary magnetic refrigerator[J]. International Journal of Refrigeration, 2010, 33(2): 294-300.
[2] YAMAGUCHI S, EMOTO M, YAMAMOTO N, et al. Refrigeration process to realize a multistage and gas-cooled current lead[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 4802304.
[3] YU B F, LIU M, EGOLF P W, et al. A review of magnetic refrigerator and heat pump prototypes built before the year 2010[J]. International Journal of Refrigeration, 2010, 33(6): 1029-1060.
[4] HUANG J H, LIU J R, JIN P Y, et al. Development of permanent magnetic refrigerator at room temperature[J]. Rare Metals, 2006, 25(6): 641-644.
[5] 司晓东, 刘永生, 徐娟, 等. 室温磁制冷材料研究进展[J]. 磁性材料及器件, 2015, 46(4): 67-73.
SI X D, LIU Y S, XU J, et al. Research progress of room-temperature magnetic refrigeration materials[J]. Journal of Magnetic Materials and Devices, 2015, 46(4): 67-73.
[6] 李振兴, 李珂, 沈俊, 等. 室温磁制冷技术的研究进展[J]. 物理学报, 2017, 66(11): 110701.
LI Z X, LI K, SHEN J, et al. Progress of room temperature magnetic refrigeration technology[J]. Acta Physica Sinica, 2017, 66(11): 110701.
[7] APREA C, GRECO A, MAIORINO A. Magnetic refrigeration: a promising new technology for energy saving[J]. International Journal of Ambient Energy, 2016, 37(3): 294-313.
[8] CAPOVILLA M S, LOZANO J A, TREVIZOLI P V, et al. Performance evaluation of a magnetic refrigeration system[J]. Science and Technology for the Built Environment, 2016, 22(5): 534-543.
[9] LI L W, YAN M. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration[J]. Journal of Alloys and Compounds, 2020, 823: 153810.
[10] 包立夫, 武荣荣, 张虎. 室温磁制冷材料的研究现状及发展前景[J]. 材料导报, 2016, 30(3): 17-22.
BAO L F, WU R R, ZHANG H. Recent development and prospect of room-temperature magnetic refrigeration materials[J]. Materials Reports, 2016, 30(3): 17-22.
[11] 郭立君, 冯再, 吴卫. 磁制冷材料绝热温变测试数据自动控制分析系统[J]. 中国测试技术, 2006, 32(2): 8-11.
GUO L J, FENG Z, WU W. Control and analysis system of the adiabatic temperature changes testing of magnetic refrigerants[J]. China Measurement & Testing Technology, 2006, 32(2): 8-11.
[12] ALAHMER A, AL-AMAYREH M, MOSTAFA A O, et al. Magnetic refrigeration design technologies: State of the art and general perspectives[J]. Energies, 2021, 14(15): 4662.
[13] 李建, 张斌, 马锦程, 等. Lamb波电磁超声换能器三维仿真研究[J]. 中国测试, 2020, 46(9): 90-95.
LI J, ZHANG B, MA J C, et al. Research on 3D simulation of electromagnetic ultrasonic transducer based on Lamb wave[J]. China Measurement & Test, 2020, 46(9): 90-95.
[14] 杜海龙, 王琦, 周振宇, 等. 单边核磁共振Halbach磁体结构设计[J]. 中国测试, 2019, 45(6): 96-100.
DU H L, WANG Q, ZHOU Z Y, et al. The structural design method of Halbach magnets for unilateral nuclear magnetic resonance[J]. China Measurement & Test, 2019, 45(6): 96-100.
[15] BJØRK R, BAHL C R H, SMITH A, et al. Review and comparison of magnet designs for magnetic refrigeration[J]. International Journal of Refrigeration, 2010, 33(3): 437-448.
[16] TREVIZOLI P V, LOZANO J A, PEIXER G F, et al. Design of nested Halbach cylinder arrays for magnetic refrigeration applications[J]. Journal of Magnetism and Magnetic Materials, 2015, 395: 109-122.
[17] TEYBER R, TREVIZOLI P V, CHRISTIAANSE T V, et al. Permanent magnet design for magnetic heat pumps using total cost minimization[J]. Journal of Magnetism and Magnetic Materials, 2017, 442: 87-96.
[18] YOU Y H, GUO Y, XIAO S F, et al. Numerical simulation and performance improvement of a multi-polar concentric Halbach cylindrical magnet for magnetic refrigeration[J]. Journal of Magnetism and Magnetic Materials, 2016, 405: 231-237.
[19] ARNOLD D S, TURA A, RUEBSAAT-TROTT A, et al. Design improvements of a permanent magnet active magnetic refrigerator[J]. International Journal of Refrigeration, 2014, 37: 99-105.