您好,欢迎来到login_星欧(官方)代理招商直营娱乐!

首页> 《中国测试》期刊 >本期导读>动态剪切流变仪校准用标准物质研究分析

动态剪切流变仪校准用标准物质研究分析

329    2024-06-26

¥0.50

全文售价

作者:苗娜1, 张正东2, 林志丹1, 刘喆2, 王义旭1

作者单位:1. 交通运输部公路科学研究院,北京 100088;
2. 中国计量科学研究院,北京 100029


关键词:动态剪切流变仪;高黏度标准物质;沥青;流变性能;聚异丁烯


摘要:

为填补我国在动态剪切流变仪校准用黏度标准物质空白,对CANNON公司黏度标准物质N2700000SP进行成分分析、黏温性能、流变性能以及动力黏度测试方法研究。通过红外光谱分析,验证N2700000SP主要成分为聚异丁烯。为量化温度对黏度的影响,通过对标准物质的温度扫描,计算得到其在64 ℃附近黏温系数为–4.5% ℃–1;采用剪切速率、温度扫描模式测定其黏温性和流变性能,明确N2700000SP为假塑性非牛顿流体,测试时必须采用合适的剪切速率或角频率。对毛细管法测得的动力黏度结果与标准值进行比较,结果表明毛细管测量方法可靠。研究可支撑我国动态剪切流变仪检校用标准物质研制。


Research and analysis of reference materials for dynamic shear rheometer calibration
MIAO Na1, ZHANG Zhengdong2, LIN Zhidan1, LIU Zhe2, WANG Yixu1
1. Research Institute of Highway Ministry of Transport, Beijing 100088, China;
2. National Institute of Metrology, China, Beijing 100029, China
Abstract: Due to fill the gap of viscosity reference material for dynamic shear rheometer calibration in China, the composition analysis, viscosity temperature performance, rheological property and dynamic viscosity test method of the viscosity reference material N2700000SP of CANNON company were studied. Through the infrared spectrum analysis, it was verified that the main component of N2700000SP is polyisobutylene. In order to quantify the effect of temperature on viscosity, the viscosity temperature coefficient of the reference material was calculated to be –4.5%℃–1 around 64 ℃ by scanning the temperature of the reference material. The viscosity temperature property and rheological property of N2700000SP were measured by the shear rate and temperature scanning mode. It was clear that N2700000SP is a pseudoplastic non-Newtonian fluid, and the appropriate shear rate or angular frequency must be used in the test. The dynamic viscosity measured by capillary method is compared with the standard value. The results showed that the capillary method was reliable. The research supported the development of reference materials for dynamic shear rheometer calibration in China.
Keywords: dynamic shear rheometer; high viscosity reference material; asphalt; rheological properties; polyisobutylene
2024, 50(6):124-130 收稿日期: 2022-04-04;收到修改稿日期: 2022-07-02
基金项目: 中央级公益性科研院所基本科研业务费专项资金(2021-9021)
作者简介: 苗娜(1987-),女,河北秦皇岛市人,副研究员,主要从事交通计量标准及标准物质研究。
参考文献
[1] 窦连果. 沥青及沥青混合料路用性能评价[J]. 交通世界, 2009, 9(5): 222-223.
DOU L G. Estimate of bitumen and asphalt mixture road performance[J]. Transpo World, 2009, 9(5): 222-223.
[2] 宋峰. 公路施工中的沥青路面施工技术研究分析[J]. 城市建筑, 2020, 17(11): 176-177.
SONG F. Research and analysis on asphalt pavement construction technology in highway construction[J]. Urbanism and Architecture, 2020, 17(11): 176-177.
[3] 郑茂. SBS及复合改性沥青高温性能研究[J/OL]. 中国测试, 1-8[2022-3-25]. https://kns.cnki.net/kcms/detail/51.1714.TB.20220324.1713.009.html.
ZHENG M. Study on high temperature performance of SBS and composite modified asphalt[J/OL]. China Measurement & Test, 1-8[2022-3-25]. https://kns.cnki.net/kcms/detail/51.1714.TB.20220324.1713.009.html.
[4] 方磊, 郭斌, 郑永军, 等. 沥青路面施工智能监控技术研究[J]. 中国测试, 2023, 49 (2): 15-21.
FANG L, GUO B, ZHENG Y J, et al. Research on intelligent monitoring technology of asphalt pavement construction[J]. China Measurement & Test, 2023, 49 (2): 15-21.
[5] 动态剪切流变仪: JJG(交通)157-2020[S]. 北京: 中国质检出版社, 2020.
[6] 石翠杰. 非牛顿流体黏度标物体系研究[D]. 青岛: 中国石油大学, 2020.
SHI C J. Study on certified reference materials system of non-Newtonian fluid viscosity[D]. Qingdao: China University of Petroleum, 2020.
[7] ZAPAS L J, PHILLIPS J C. Simple shearing flows in polyisobutylene solutions[J]. Journal of Research of the National Bureau of Standards A. Physics and Chemistry, 1971(75A): 33-40.
[8] ZAPAS L J, PHILLIPS J C. Nonlinear behavior of polyisobutylene solutions as a function of concentration[J]. Journal of Rheology, 1981(25): 405-420.
[9] KHALIL K, TOUGUI A, SIGLI D. Relation between some rheological properties of polyisobutylene solutions and their mode of preparation[J]. J Non-Newtonian Fluid. 1994(52): 375-386.
[10] SCHULTHEISZ C R, MCKENNA G B. A Nonlinear fluid standard reference material: progress report[J]. Proceedings of SPE ANTEC, 1999(1): 1125-1129.
[11] SCHULTHEISZ C R, MCKENNA G B. Standard reference materials: non-Newtonian fluids for rheological measurements[C]//Proceedings of SPE ANTEC, 2000.
[12] 弥海晨, 郭平, 胡苗. 橡胶沥青黏度测试影响因素及黏度值确定方法研究[J]. 中外公路, 2010, 30(5): 301-304.
[13] 罗浩原. 基于旋转平板黏度测试方法的沥青施工温度预测及黏度特性研究[D]. 成都: 西南交通大学, 2020.
[14] ZHANG Y L, HUANG M M, KAN Y, et al. Influencing factors of viscosity measurement by rotational method[J]. Polymer Testing, 2018(70): 144-150.
[15] YE L, XIE Y, QIU D. Particle shape dependence of rheological behavior for colloid-polymer mixtures[J]. Chinese Journal of Polymer Science, 2014(11): 1515-1523.
[16] 徐学林, 张正东, 励杭泉. 葡聚糖水溶液触变性及动态黏弹性研究[J]. 计量技术, 2009(7): 38-40.
[17] 孙磊, 佟丽莉. Cox-Merz规则和时温叠加原理在聚合物剪切黏度测量中的应用与研究[J]. 纤维复合材料, 2013, 30(4): 8-12.
SUN L, TONG L L. Application of Cox-Merz relation and time-temperatu re superposition in the measurement of polymer shear viscosity[J]. Fiber Composites, 2013, 30(4): 8-12.
[18] 卢兴国, 张国忠, 刘刚, 等. 胶凝原油稳态-动态流变性测量[J]. 油气储运, 2013, 32(1): 27-30.
LU X G, ZHANG G Z, LIU G, et al. Steady state vs dynamic rheology measurement of gel crude oil[J]. Oil & Gas Storage and Transportation, 2013, 32(1): 27-30.
[19] COX W P, MERZ E H. Correlation of dynamic and steady flow viscosities[J]. Journal of Polymer Science Part A Polymer Chemistry, 2010, 28(118): 619 - 622.
[20] FUJITA Y, ZUBLER T, MASTROPIRRO J, et al. CCM. V-K3: CCM Key Comparison of Viscosity[J]. Metrologia, 2018, 55(1A): 07010.
[21] 标准毛细管黏度计:JJG 154-2012[S]. 北京: 中国质检出版社, 2013.
[22] 王星, 潘义, 张鹏辉, 等. 黏度标准物质研制[J]. 中国测试, 2015, 41(5): 5-8.
WANG X, PAN Y, ZHANG P H, et al. Development of reference materials of viscosity[J]. China Measurement & Test, 2015, 41(5): 5-8.