您好,欢迎来到login_星欧(官方)代理招商直营娱乐!

首页> 《中国测试》期刊 >本期导读>储能协调下负荷密集区分布式综合能源系统优化研究

储能协调下负荷密集区分布式综合能源系统优化研究

344    2024-06-26

¥0.50

全文售价

作者:康利改1,2,3, 袁小雪4, 曹紫霖1,2,3, 高晓霞5, 沈仁东6, 赵军6

作者单位:1. 河北科技大学建筑工程学院,河北 石家庄 050018;
2. 河北省岩土与结构体系防灾减灾技术创新中心(筹),河北 石家庄 050018;
3. 智能低碳装配式建筑技术研究中心,河北 石家庄 050018;
4. 河北省科学院能源研究所,河北 石家庄 050081;
5. 华北电力大学动力工程系,河北 保定 071003;
6. 中低温热能高效利用教育部重点实验室(天津大学),天津 300072


关键词:分布式综合能源系统;江水源热泵;光伏;储能系统;能耗模拟;配置优化


摘要:

分布式综合能源系统是提高清洁能源使用比例,实现碳减排和碳中和目标的一种配套技术。因此,针对负荷密集区冷热电负荷供需矛盾问题,提出储能协调下的负荷密集区分布式综合能源系统,并构建数学模型。其次,确立考虑系统经济、能耗、环境性能的多目标优化模型,利用层次分析法确定不同优化指标之间的权重关系。建立由住宅、办公、酒店、商场四类建筑组成的负荷密集区建筑模型,分别对四类建筑全年的逐时冷热电负荷进行模拟。最后,对比分析四类建筑分别单独设置供能系统和考虑四类建筑负荷耦合互补设置一套供能系统时的系统容量配置优化以及在相关政策影响下的系统性能。结果表明:无论是否加入储能系统,考虑四类建筑负荷耦合互补设置一套供能系统时的系统性能优于四类建筑分别单独设置供能系统的性能。


Optimization of distributed integrated energy system in load intensive area under energy storage coordination
KANG Ligai1,2,3, YUAN Xiaoxue4, CAO Zilin1,2,3, GAO Xiaoxia5, SHEN Rendong6, ZHAO Jun6
1. School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
2. Innovation Center of Disaster Prevention and Mitigation Technology for Geotechnical and Structural Systems of Hebei Province (Preparation), Shijiazhuang 050018, China;
3. Engineering Technology Research Center for Intelligent & Low-carbon Assembled Building, Shijiazhuang 050018, China;
4. Institute of Energy Sources, Hebei Academy of Science, Shijiazhuang 050081, China;
5. Department of Power Engineering, North China Electric Power University, Baoding 071003, China;
6. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), MOE, Tianjin 300072, China
Abstract: Distributed integrated energy system (DIES) is considered to be a supporting technology to increase the proportion of clean energy use and achieve goals of carbon emission reduction and carbon neutrality. Therefore, aiming at the contradiction between supply and demand of cooling, heating and electric load in load intensive areas (LIAs), DIES in LIAs under energy storage coordination is constructed. Secondly, a multi-objective optimization model considering economy, energy and environmental performance is established. The weight of different indexes is determined by analytic hierarchy process. Then, the building model of residential, office, hotels and shopping buildings are employed and hourly cooling, heating and electric load are simulated. Finally, the system capacity allocation optimization analysis and system performance analysis under the influence of policies are compared and analyzed when four types of buildings in LIAs are separately set up with DIES and the four types of buildings are coupled and complementary set up with DIES. Draw conclusions: regardless of whether the energy storage system is added, when LIAs is as a whole, the overall optimization results of DIES in LIAs are better than the classification optimization results when DIES is optimized separately for each type of building.
Keywords: DIES; river water source heat pump; PV; energy storage system; energy consumption simulation; configuration optimization
2024, 50(6):167-175 收稿日期: 2022-07-11;收到修改稿日期: 2022-09-28
基金项目: 河北省自然科学基金(E2019208191);河北科技大学博士科研启动基金(1181332)
作者简介: 康利改(1983-),女,河北石家庄市人,副教授,博士,主要从事综合能源系统多目标优化及建筑节能等研究。
参考文献
[1] 高庆先, 高文欧, 马占云, 等. 大气污染物与温室气体减排协同效应评估方法及应用[J]. 气候变化研究进展, 2021, 17(3): 268-278.
GAO Q X, GAO W O, MA Z Y, et al. The synergy effect assessment method and its application for air pollutants and greenhouse gases reduction[J]. Climate Change Research, 2021, 17(3): 268-278.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95.
[3] WANG J, JING Y, ZHANG C. Optimization of capacity and operation for CCHP system by genetic algorithm[J]. Applied Energy, 2010, 87(8): 1325-1335.
[4] WANG J, ZHAI Z, JINNG Y, et al. Particle swarm optimization for redundant building cooling heating and power system[J]. Applied Energy, 2010, 87(6): 3668-3679.
[5] 李剑锋, 郝晓光, 曾四鸣, 等. 考虑碳排放的综合能源系统储能优化配置研究[J]. 中国测试, 2022, 48(7): 83-89.
LI J F, HAO X G, ZENG S M, et al. Research on optimal energy storage configuration of integrated energy system considering carbon emissions[J]. China Measurement & Test, 2022, 48(7): 83-89.
[6] 龚逊东, 薛溟枫, 毛晓波, 等. 电转气成本特性对电-气-热综合系统调度的影响[J]. 中国测试, 2020, 46(7): 33-39.
GONG X D, XUE M F, MAO X B, et al. Influence of power-to-gas cost characteristics on scheduling of power-gas-heating integrated system[J]. China Measurement & Test, 2020, 46(7): 33-39.
[7] SI P, LI A, RONG X, et al. New optimized model for water temperature caculation of river-water source heat pump and its application in simulation of energy consumption[J]. Renewable Energy, 2015, 84(5): 65-73.
[8] LI R, DAI Y, CUI G. Multi-objective optimization of solar powered adsorption chiller combined with river water heat pump system for air conditioning and space heating application[J]. Energy, 2019, 189(15): 116141.
[9] 吴杰, 李妤姝, 卢军. 重庆某江水源热泵性能影响因素分析[J]. 制冷与空调(四川), 2020, 34(5): 581-587.
WU J, LI Y S, LU J. Analysis of factors affecting the performance of a water source heat pump in a river in Chongqing[J]. Refrigeration & Air Conditioning, 2020, 34(5): 581-587.
[10] 龙天河, 张伟. 燃气三联供和江水源热泵复合系统数学模型的建立和分析[J]. 制冷与空调(四川), 2018, 32(2): 125-130.
LONG T H, ZHANG W. Mathematical modelling and studying of the composite system of CCHP and river water source heat pump[J]. Refrigeration & Air Conditioning, 2018, 32(2): 125-130.
[11] 康利改, 杨俊红, 赵军, 等. 基于温度控制的空调系统能耗和IPLV研究[J]. 电气应用, 2016, 35(7): 59-66.
KANG L G, YANG J H, ZHAO J, et al. Power consumption and study on IPLV of the air conditioning system based on terminal temperature control[J]. Electrotechnical Application, 2016, 35(7): 59-66.
[12] YANG G, ZHAI X. Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition[J]. Energy, 2019, 174(3): 647-663.
[13] 耿健, 杨冬梅, 高正平, 等. 含储能的冷热电联供分布式综合能源微网优化运行[J]. 电力工程技术, 2021, 40(1): 25-32.
GENG J, YANG D M, GAO Z P, et al. Optimal operation of distributed integrated energy microgrid with CCHP considering energy storage[J]. Electric Power Engineering Technology, 2021, 40(1): 25-32.
[14] KANG L, WU X, YUAN X, et al. Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings[J]. Energy, 2021(2): 121-159.
[15] KANG L, YUAN X, SUN K, et al. Feed-forward active operation optimization for CCHP system considering thermal load forecasting[J]. Energy, 2022, 254(1): 124234.